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0. Introduction

In recent years, there has been considerable interest in

determining the manner in which complicated oscillatory phenomena

can occur in dynamical systems through bifurcations (see, for

example, [5],[6],[9],[10],[11],[12],[18]). In this paper, we

consider the same type of problems for low dimensional systems.

More specifically, in Section 2, we suppose f is a vector

field on IR2 which corresponds to a bifurcation point of degree

one; that is, the vector field possesses either a saddle-node or

a degenerate focus or a degenerate periodic orbit or a homoclinic

orbit. The first problem that is considered is the characterization

of the flow for a perturbation of this vector field when the per-

turbation is allowed to be periodic in the independent variable.

By using the classical theory of integral manifolds appropriately,

we are able to give a complete solution for the saddle-node or

degenerate focus. The theory also applies to the degenerate focus

even when the perturbations are almost periodic. For the cases

corresponding to a degenerate periodic..orbit or a homoclinic orbit,

only partial results are obtained.

In Section 3, we consider the behavior of the solutions for

an autonomous equation in dimension > 2 near an equilibrium

point when the linear variational equation has more than two eigen-

values on the imaginary axis. More specifically, we consider an

equation in IR3 with two purely imaginary and one zero characteris-

tic root. Using the theory of normal forms and polar coordinates,
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one can consider this as the periodic perturbation of an autonomous

equation in IR2 . We first give a complete bifurcation diagram for

the autonomous equation under generic hypotheses on the quadratic

and cubic terms. Each point on a bifurcation curve is a bifurca-

tion point of degree one. The theory of Section 2 is then applied

to obtain a complete description of the problem in IR. This

generalizes results of (5],[9].

We give explicit approximations for the bifurcation curve

and show the specific structure of the bifurcation near the homo-

clinic orbit. Near the Hopf bifurcation, our results could also

be obtained from known results on behavior of diffeomorphisms

(see, for example, [15],[19]). However, our methods based on the

more classical theory of integral manifolds permits the considera-

tion of perturbations which are even almost periodic.

In Section 3, we also discuss an equation in JR4 with two

pairs of purely imaginary roots. Using the theory of normal forms

and polar coordinates, the problem is reduced to the discussion

of an autonomous equation in 2 perturbed by higher order terms

involving two angle variables. This corresponds to a perturbation

2 4 2
of the equation in IR2  into IR. The autonomous equation in IR
involves no quadratic terms. Under some generic hypotheses on the

terms up through fifth degree, we give a bifurcation diagram for

the autonomous problem.which has the property that each bifurcation

is of degree 1.

In particular, we prove the conjecture in [9] that there is
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a first integral of the approximate system at the critical values

of the parameters where a Hopf bifurcation is conceivable. This

has also been recently obtained independently in [6]. From the

consideration of higher order terms, we resolve the nature of the

bifurcation at this point. Again, using the analysis of Section

2, we mention partial results for the bifurcations in JR4.

1. Summary of known results

If 9 is an open set in IR2 , r a ag, and = z u r,

let 9 =.( ) be the set of Cr-vector fields from f to ]R2

which are transverse to r. Two vector fields f,g are equivalent

f "' g, if there is a homemorphism on U which maps orbits of

f onto orbits of g preserving the sense of time. An f E9

is structurally stable if there is a neighborhood U of f such

that. g ^. f if g E U. An f Er is a bifurcation point of2

degree one if f is not structurally stable and there is a neigh-

borhood U of f such that g E U implies g is either struc-

turally stable or g v f.

Theorem 1.1 (see [21,[17]).

An f C is structurally stable if and only if every I2
equilibrium point and every periodic orbit is hyperbolic and there

are no connections between saddle points.

The set of bifurcation points of degree one also is complete-

ly classified. The basic result is the following (see [1],[201,[211).
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Theorem 1.2. A vector field f E.2, r > 3, is a bifurcation

point of degree 1 if and only if there is a neighborhood W of

f and a submanifold r of codimension one in W such that

W "'r = U U 11 where each g E U. is structurally stable but

g h if g E U, h E U2. For g E r, only one of the following

situations prevails:

(i) g e r has an elementary saddle-node at x0, there are

no equilibrium points of g near x0  if g E U1  and a saddle

and node near x0  if g E U2.

(ii) g E r has an elementary focus at x0, there is no

periodic orbit of g near x0  if g E U1  and a periodic orbit

near x0  if g E U2 the generic Hopf bifurcation.

(iii) g e r has a periodic orbit y which is stable from

one side, unstable from the other, g E U1  has no periodic orbit

neat' y and g E U2 has two hyperbolic periodic orbits near y.

(iv) a - tr af(O)/ax 0 0, g E r has a homoclinic orbit

containing a saddle point x0 , g E U1  has a saddle near x0 and

no periodic orbit near y, g E U2" has a saddle point and a unique

hyperbolic periodic orbit near y which coalesce as g r.

Each of the cases (i)-(iv) are shown in Figure 1.
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2. Periodic perturbations.

For vector fields of dimension > 2, the literature on

structural stability and bifurcation is extensive, but the results

are less complete. We illustrate some of the difficulties by

considering perturbation of a planar autonomous system by periodic

terms.

Suppose X,U are real parameters and consider the system

,x f(x,x) + g(t,x,j)

where g(t,x,p) = g(t+l,x,vi),g(t,x,O) = 0.

We assume that f(.,0) is a bifurcation point of degree

one. More precisely, suppose U = U1 'j r j U2 as in Theorem 1.2,

f(.,0) E r, fC.,x) E u1  for X < 0, f(',X) E U2  for X > 0 and

the curve {f(-,X),A EIR} is transverse to r at X = 0.

The vector field f(.,X) is structurally stable for X # 0

and the manner in which the change is made from one type of

structurally stable system to another at X = 0 is one of the

situations shown in Fig. 1 and described in Theorem 1.2.

By an application of the Implicit Function Theorem, for any

X0 EIR, there is an n(A0 ) > 0, v(X0 ) > 0 such that each hyperbolic

equilibrium point of the autonomous equation (2.1) A0,0 is perturbed

to a 1-periodic solution of (2.1),, for IA-A01 < n(i0)v

I I < v(X0 ). The classical theory of integral manifolds (see, for

example, [7)) implies any hyperbolic periodic orbit is perturbed to
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a smooth hyperbolic invariant manifold in IR x 1 2 which is like

a cylinder whose cross section is one periodic for IX-X01 < n(xO) ,

Jul < V(XO). Identifying the cross section at t = 0 with the

one at t = 1, we obtain a torus. Thus, if X0 0 0; that is

f(',XO ) is structurally stable, then the flow for the perturbed

equation is understood. Of course, the size of the perturbation,

Ix-x0 J < n(XO), uIl < v(XO), for which this is true depends upon

A 0" The difficulty arises, therefore, in a neighborhood of

x0 = 0. Let us discuss this situation in more detail.

Suppose case (i) occurs for X = 0, u = 0. Let p be the

saddle node in Fig. 1 and let v be a unit vector in the null

space of af(p,0)/ax. Using the classical method of Liapunov-

Schmidt, one obtains a bifurcation function G(a,X,P) for

IaJ,IXJ,IpI sufficiently small so that (2.1). has a 1-periodic

solution x(t) in a sufficiently small neighborhood of p if and

only if there is an (a,X,v) such that G(a,X,V) = 0 and the

constant a is such that Jx(t)dt = p + av. Furthermore, G(a,0,0) =

a2 + 0(1a12) as lal + 0, where a. is a nonzero constant. Using

this fact, it is not too difficult to show that a neighborhood U

of (XV) =(0,0) can be decomposed as U = U1 u r u U2 where r

is a smooth curve containing (0,0) such that the period one map

of the Eq. (2 .1),', in a neighborhood of p is the same as the

one in Fig. 1.1. This gives a complete solution of the problem

in case (i).

Suppose f(.,0) satisfies (ii) of Theorem 1.2; that is, the

...............
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autonomous equation (Pi0) has a generic Hopf bifurcation. By

a transformation of variables, we may assume Eq. (2 .1) , has

the form

(2.2)x)1 x A(X)x + F(xX) + g(t,x,p)

with g satisfying the same conditions as before, F(O,X) = 0,

aF(0,X)/ax = 0 and

(2.3) A(X) =0 0, WO >  0,

and dct/dXI)= 0  = L: 10
X X= =t CI 0.

We make the hypothesis that

iwo
(2.4) e 1 1

that is, the equation x = A(0)x has no 1-periodic solutions

except x = 0.

Hypothesis (2.4) implies there is a neighborhood U of

x = 0 and a neithborhood V of (X,V) = (0,0) such that

Eq. (2.2))~ has a unique 1-periodic solution *(X,) in U

for (X,U) in V, *(X,O) - 0 for all X. If x(t) J-. (),a)(t) +

x(t) then the new equation has the form

(2.5) , Ax = A(X)x + G(t,x,),p)
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where G(t,x,X,P) is 1-periodic in t,

G~t,x,Xj) = F(C(X,j.)(t)+x,X) + gt,W,])Ct)+x,V)

(2.6)

-F( (X,p) (t) ,X) -g~t,,(X,i) (t) ,l

Thus, G(t,O,X,U) - 0 for all t E1R, (X,V) E V, G(t,x,X,O) =

F(x,X).

One now can introduce polar coordinates x N+ (p,(),

x 1  p cos 0, x2 = -p sin 0, to obtain the equations

0 X +O(t,'pX,
~(2.7)XV

p = aXp + R(tO,p,X,).

Eq. (2.7),, must be analyzed for (p,X,p) in a neighborhood

of zero. To use the theory of normal forms or averaging effectively,

we make the further nonresonance hypothesis

(2.8) mwo + n/2ir 0 0, m,n integers, Iml + Inj < 4.

Hypothesis (2.8) implies there is a change of variables

0 - B + u(t,e,p,x,P), p I p + v(t,0,P,A,Ij)

with u,v periodic in t and 0 respectively of period 1 and
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2w/wo, u being O(IPI), v being o(Ilp), for Xl = 0,

such that Eq. (2.7),, becomes

WX+ (X,P) + 6(t,6O~px'1)(2.9) ,

( -+y(X,i))p + d(Aii)p R(t,0,p,,)

where e vanishes for p = 0, R = o(IpI 3) as P - 0. Further-

more, the properties of G in (2.6) and the fact that f(.,0)

corresponds to a generic Hopf bifurcation implies

(2.10) O(X,0) = 0, y(X,0) = 0, d(0,0) 0, a0 d(0,0) < 0,

the .atter inequality being the case if the picture is the one

shown in Fig. I for case (ii).

Let C be the curve defined in a neighborhood of (X,P) = 0

by

(2.11) C = {(QX'1): ax + y(pji) = 01

This curve is well defined since a0 # 0 and Y(X,0) = 0.

Introduce new small parameters (c,6), c = a+ y(X,), 6 = V so

that C corresponds to e = 0.

To be specific in what follows, suppose that d(0,0) < 0.

In this case, for (A,p) E C, that is, c = 0, the integral

manifold p - 0 of (2.9), is uniformly asymptotically stable
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for 6 sufficiently small. For c < 0, the same is true and

one can actually find an co > 0 and a 60 such that this is

true for -co < c < 0, 161 < 60. For each c > 0, the theory

of integral manifolds shows there is an invariant torus which

is uniformly asymptotically stable for 161 < 60( ), and attracts

everything in a neighborhood of p = 0 except the line p = 0.

This fact, together with the stability at c = 0 implies we can

find positive s0 ,60  such that all of the above assertions are

valid for JEd < co, 161 < 60. Details of the proof are not given

here. We note that by introducing new variables p = 6p and

= 62 C, we may apply the integral manifold theorem in [7]

directly to obtain the desired tori. We may also prove the

uniqueness of such tori by using the uniqueness method in [4].

These results are summarized in the following theorem.

Theorem 2.1. Suppose f(-,0) satisfies (ii) of Theorem 1.2 and

the equilibrium point of f(.,X) is stable for X < 0 and

conditions (2.4) and (2.8) are satisfied. Then there is a neigh-

borhood W of x = 0, a neighborhood V of ({,V) = 0 and a

smooth curve C c V containing (0,0) such that V = V1 U C U V2

with V1 ,V2  open connected sets such that the following conclusions

hold for all solutions x(t) of (2.1), with initial values in

W:

(i) For (X,p) E V1. there is a 1-periodic solution f(X,U)

of (2.1),', with both characteristic multiples less than one and

x(t) - (,) (t) 0 as t - .

-. .. 4
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(ii) For (X,p) E C, there is a 1-periodic solution

*(Xp) such that both characteristic multipliers are one and

the same conclusion as in (i) holds.

(iii) For (X,u) E V2, there is a 1-periodic solution

*(X,p) of (2.1), with both characteristic multipliers greater

than one and an invariant cylinder in 1R3 with 1-periodic cross

section which)uniformly asymptotically stable and x(t), x(O)

¢(.,p)(0), approaches this cylinder as t + C.

If the equilibrium point of f(.,O) is unstable and f(.,O)

satisfies (ii) of Theorem 1.2, then a similar result is obtained

with obvious changes in the stability statements.

Remark. The above theorem is also true for quasi-periodic g

provided the appropriate conditions on the frequencies in terms

of roots of unity are assumed. Similar remarks apply when e is

a vector and all functions are periodic in each component of 0.

Now, suppose that f(-,O) satisfies (iii) of Theorem 1.2.

This case is much more complicated than the previous one because

there is no way to obtain any solution whose qualitative properties

are known for all X,p (in the previous case, we used strongly

the fact that a 1-periodic solution was known to exist for all

X,0). On the other hand, some results can be obtained, but they

are not as complete as in case (ii).
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For A = 0 0, Eq. (2.1)0,0 has a unique periodic orbit

YO which is asymptotically stable from one side and unstable

from the other. Suppose y0 - {xoC(), e Cm} where xo(t) is

a periodic solution of (2.1)0,0 of least period 21r/wo, w0 > 0.

if p represents distance from yo along a normal, then one

can introduce a local coordinate system around yo which takes

x i' (6,p) to obtain the equations

o = 1 + Ot'e' ,)

p= R(t,e,p,,p)

where O,R vanish for (p,X,V) = 0,0,0), are 1-periodic in t

and ""Zi/wo0 periodic in 6.

Let us suppose that we can average to obtain an equivalent

set of equations

o - 1 + aX + bu + O(t,e,pX,)

(2. 13)X~

; = cX + du + ep + fp2 + R(t,0,p,Ap)

where a,b,c,d,e,f are constants, O,R for p = 0 are

O((tXI+hlu) 2 ) as X,p -* 0 and R for A - vi 0 is o0(p3 ).

The hypothesis that f(.,0) satisfies (iii) of Theorem 1.2 implies

cf < 0, e = 0. Since c 0 0, let us introduce new parameters (6,c)

as 6 P, = cA + du to obtain the equations
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8 * 1 + a'6 + b'e + O'(t,e,pc,6)

(2.14)

P =  + fP2 * R'(t,e,P,E,6)

with 0',R' having the same type of order relations as before.

For any E small enough such that cf > 0, it is shown

there is a 6,(E) > 0 such that no solution of (2.14) remains

in a neighborhood of p - 0 for all t if 0 < 6 < 60(c). This

is the analogue of A < 0 and the picture in Fig. I for the period

one map. If cf < 0, then the theory of integral manifolds shows

there is a 6O(c) > 0 such that there are two invariant cylinders

TI  T2  of (2.14)Ea 0 < 6 < 6oC) with periodic crosse,6' L,6 " ,6' -

section; that is, two invariant tori T , T 2c ,6, T,6" One of these

tori is completely unstable and the other is uniformly asymptoti-

cally stable. Furthermore, any solutionof (2.14) , 6 which remains

in a sufficiently small neighborhood of p a 0 for t > 0 (t < 0)

must approach either TI  or T 2 ,as t-(t Thus, weC,6 or '6 a t -( -).Tue

have complete knowledge of the solutions in a subset of a neighbor-

hood of (E,6) a (0,0). The subset is depicted in Fig. 2.

C

Figure 2.

-- .----- ---------------
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As c * 0, the number 60(c) may also approach zero.

The reason for this fact is that the invariant tori T1  T2

C,6' C,6

for a fixed £ may fail to exist as smooth Invariant sets for

some small 6. This is a general fact in differential equations.

Given a smooth hyperbolic invariant torus for a differential

equation, the existence of a smooth invariant torus for a small

perturbation of this equation generally requires that the strength

of the hyperbolicity is greater than the rate of attraction of

orbits on the torus. If this is not the case, the invariant sets

develop cusps at rational rotation numbers. For the sets TI
C,6'

T2  above, the strength of the hyperbolicity approaches zero as
C,6

c - 0 for any fixed 6. Thus, it is conceivable that the sets

touch for some c without coalescing in a uniform manner, This

is w .y we cannot complete the picture in Fig. 2. The behavior in

the unshaded region will be extremely complicated and no one has

made any progress toward an explanation. The classical theory of

integral manifolds gives no information.

Suppose now that f(',O) satisfies condition (iv) of

Theorem 1.2. This situation has been discussed much more in the

literature because so many new phenomena occur. If p is the

saddle point of the homoclinic orbit y of (2.1)0, 0 , then the

Implicit Function Theorem gives a 1-periodic solution *(X,U) of
def(2.1)X,, for X,u small, #(0,0) P l, and P, M 40,00)

will be a saddle point for the period one map w = wX9 . Let

WS , W91  be the stable and unstable manifolds of P, as a

fixed point of w.
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A point q is homoclinic to P , if q E W fl w,,.

It is transverse homoclinic to P if it is homoclinic to

P and, in addition, W Wu are transversal at q. For

= p = 0, any point q 6 y is homoclinic to p0 - x0, but it

is not transverse homoclinic. Under a small perturbation in an

appropriate direction, one would expect that WS, n Wand

intersect transversally at some point q close to y. The

behavior of the solutions of (2.1) ,, is then very complicated

near y. In fact, one can show there are infinitely many dis-

tinct periodic solutions. Also, there is an invariant set of

7k for some integer k for which the flow is equivalent to the

shift automorphism on two symbols (see [14]).

It has also been shown that, in a neighborhood of the

bifurcation point, there are generically in g infinitely many

hyperbolic souTces (or sinks) (see [161). This suggests that

the bifurcation to transverse homoclinic points might be related

to some other types of successive bifurcations of periodic orbits

of longer and longer period. The existence of these successive

bifurcations have not been studied whe f(.,0) satisfies (iv) in

Theorem 1.2.

For the case where f(*,O) is Hamiltonian, successive bi-

furcations appear to be the general rule as indicated by the

results in (3]. Let us summarize these results for a special case.

Consider the equation

LL- .. ~_ _ -
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-y,

(2.15)i u

y- x - x2 - + f(t)

where X.,v are small'parameters, f is continuous and f(t+1)

f(t). Eq. (2.15)0,0  has a homoclinic orbit y, but it does not

satisfy (iv) of Theorem 1.2 since the divergence of the vector

field at the saddle point (0,0) is zero. Let

y - [(0,0)) U ((p(t),p(t)), -- < t < -) where (p(t),p(t)) is

a solution of (2.1 5 )0,0 which approaches zero as t * ±+. We may

normalize p so that 0(0) - 0.

Let

(2.16) h.(w - ftft-)t/fp (t)dt

and suppose that every extreme point of h is a strict local

maximimum or local minimum. Let #M,fm E [0,1) correspond res-

pectively to the absolute maximum and minimum of h. We now state

the following result from [3]. Parts (i), (ii) were also essen-

tially given in (131.

Theorem 2.2. Under the above hypotheses, there is a neighborhood

U of y in IR , a neighborhood V of (X,p) - (0,0) in R2
____nV,_k ____o__olck c

an integer k > 0 and curves CM ,  n V, k -

(including -) which have parametric representations with twice

I "A
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continuously differentiable functions, each k k contains
(0,0), C * C C * 'as k * uniformly, CO[Cc* is

tangent to the curve defined by X - h( M)v [A = h(*m)u] at

(Ai) u (0,0) and for each integer k e [k0 ,as], the set

V k Uk k k kk disjoint, and the following
(M Cm) 1  S2  S1 , 2 op,

conclusions hold for Eq. (2.1 S),,

(i) x E Sl implies no homoclinic point exists in U

(ii) A C So implies a transverse homoclinic point exists

in Sw
- 2

(iii) If k < X E Sk  implies no subharmonic solution in U

(iv) If k < -, A E Si implies there are at least 2k

hyperbolic subharmonics in U.

(v) If A E R Ok S2 then there are infinitely many

hyperbolic nodes or foci in U corresponding to fixed points of

iterates of the period one map.

The above theorem shows, in particular, the following. If

(X,v) is a point of bifurcation to trknsverse homoclinic orbits;

that is, (X,V) E Cc or C and W is any neighborhood of this

point, then there are infinitely many subharmonic bifurcations in

W.

Let us outline the proof. In (2. 15 )A,i, if x(T) = p(T *)

z(T*), T " t, then

(2.17) z + a(t)z = F(t,z,z,A,v,*)

- - -.......
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where a(t) = -1 + 2p(t), the derivative of -x + x evaluated

at p(t). The function F is given by

F = -A- - )p + pf(t-*) - z2 .

The first step of the proof is to obtain conditions for

the existence of a homoclinic orbit. This is equivalent to find-

ing a solution z of (2.17) which approaches zero as t . ±_.

We, therefore, need an analogue of the Fredholm alternative for

bounded solutions on IR of the nonhomogeneous equation

" + a(t)z = F(t)

where F(t) is bounded and continuous on IR. A careful analysis

of the variation of constants formula shows that such a solution

exists if and only if

fp(t)F(t)dt - Ov

If this condition is satisfied, then the solution is unique.

After having this Fredholm alternative, one can adapt the

reduction principle of Liapunov-Schmidt or the method of alternative

problems to this situation to obtain a bifurcation function

G(f,X,U) defined for * CIR, (X,V) in a neighborhood of (0,0),

which has the property that there is a homoclinic orbit in a small

neighborhood of y, if and only if G(,X,p) = 0. Furthermore,
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it is transverse homoclinic if and only if aGC*,x,')/8 0.

To solve this equation, one observes that

G(*,AuJ) = -k 4 i+h(t) + O((lAl+Iv) 2)

as X,p -o 0 where h() is defined in (2.16). The proof of

parts (i) and (ii) in the theorem are now supplied without much

difficulty.

To prove the other parts, one uses the results in [81 for

obtaining the curves of bifurcation to subharmonics of order k

coming from the orbit of period k of (2.15)0, 0 . One then shows

by a nontrivial argument that the conditions on h(a) imply the

ones in [81 uniformly in k. This will complete the proof (see

[3] 'for details).

3. Two purely imaginary and one zero root.

In this section, we consider a differential equation in

IR3  for which the linear variational equation near the equilibrium

point zero has two purely imaginary eigenvalues and one zero eigen-

value. To simplify the situation, it will be assumed also that a

certain type of symmetry prevails. More specifically, consider

the equation

x - A(X)x + f(x,y)

y = By + g(x,y)

- - - - r -
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where ),B are small real parameters, x E IR2, yE IR, f,g are

C- functions,

t A(X),-

(3.2) f(x,y) - O(Ix (Ixl+lyl))

g(x,y) = o((Ixl+lyl))

as Ixl, Iyl 0. The hypothesis on f implies that the symmetry

condition

(3.3) f(Oy) = 0

is s.atisfied.
• Li

Since f(O,y) = 0, it is legitimate to introduce polar

coordinates for x = (xl,x 2 ) as x1 = r cos 8, x2 = -r sin 0.

If this is done and t is replaced by., 0, one obtains the equations

p = Xp + R(e,p,y,X,O)

(3.4)

y = By + Y(e,piy,A,B)

where R * O(plo(lpI+IyI)), Y - o((pl+jyl)2) as p,y 0.

The problem is to determine the behavior of the solutions

of (3.4) in a neighborhood of (p,y) = (0,0) for (X,B) in a

- -----------------.------.



neighborhood of (0,0). To discuss (3.4), one can use the theory

of normal forms (or averaging) to transform (3.4) to a system

2 22

- p(X+ay) + O(Ipl(p +y ))

2 2 3
y = Oy + by + cp + O((lpl+lyl) )

as p,y 0 0. The generic situation is to have a,b,c nonzero

constants.

To simplify the computations, and also to consider the

most interesting case, we suppose a = 2, b = c = -1 so that

the equations are

p = p(),+2y) + OOjp((p 2 +y2 ))

(3.6.):
y e y - yZ . P + o((IPl+lyl)3

as p,y 0 . '

It is convenient to introduce the change of variables

y 8 B/2 + y, X + 8 + a, to obtain the more symmetric form

p(Ca+2y) + o(ip,(P2+C8/2+y) 2 )

(3.7)
I 2  . 2 23

Y y p + O((jpj+B/2+y)

as p,O,y " 0.
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If we perform the scalings

(3.8) p , zp, y "y, E, a 4 Ca, t 4 -it

the new equations become

p = 2py + ap + 0OCII)

(3.9)

1 2 2 ~~jy= yZ P + oO1 1

as c- 0.

Equations (3.9) must be discussed for all p > 0, yE 1R,

aE 1R and c in a neighborhood of c = 0.
For a = 0, C = 0, the function

(3.10) V(p,y) = - py2  P3

is a first integral of (3.9). Since t.he Jacobian of the vector

field in (3.9) has trace a, it follows that there can be no

periodic orbit ot (3.9) unless a = 0. This remark makes much

of the discussion of (3.9) very simple for a 0 0, c = 0. In

fact, the topological structure of the flow is determined by the

qualitative properties of the equilibrium points.

The equilibrium points of (3.9) for c = 0 are p = 0,

y = - for all a and the point y = -a/2, p2 (1-a2)/4 for
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2 < 1. For a2  1, the points p 0, y ± 1/2 are hyper-

bolic saddles or nodes. In fact, for a > -1 (a < -1), the point

(1/2,0) is a saddle (stable node). For a > 1(<l), the point

(- 1/2,0) is a saddle (unstable node). For a > 0 (<0), the

.,;point (-a/2,(l-a2 ) 2/2) is a stable (unstable)focus. For a = 1,

the point (- 1/2,0) is a saddle-node. For a = -1, the point

(1/2,0) is a saddle-node. These facts imply that the phase

portrait for (3.9) for a 0, c = 0 are the ones shown in Fig. 3.

The only bifurcation points are when a = ±1 and these are of

saddle-node type. For a = 0, e = 0, the function V in (3.10)

is a first integral and the phase portrait is determined from the

level curves of this function shown in Fig. 3.

As remarked in the previous section, for each a j 0, there

is an E0 (a) such that the same portraits are valid for the period

map (remember the terms in C are periodic in 0) of the complete

equations (3.9) for 0 < E < c0 (a). This gives a uniform estimate

in E as long as a remains in a compact set. To obtain a

uniform estimate for a large, we return to the original equation

(3.7) and introduce the scaling

p E ep y'4 "y, a '- c, *+ e, t + t

to obtain the equations

P = p2y + p + O(ICl)

• 2  2 2
y -- -- P .
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0i < 0, c 0

Fiur 3.
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In this equation, we need to discuss only the case where c is

near zero and B varies in a neighborhood of zero because the

case for large 8 is the same as the previous one with the

scaling (3.8). For c = 0, = 0, the equations have only one

equilibrium point p = 0, y - 0 and this is a saddle-node. The

analysis in the previous section applies to this case.

This shows that the only case remaining to discuss in

Eq. (3.9) is a = 0, c = 0. The manner in which the phase

portrait in Fig. 3 changes as we vary (a,e) in a neighborhood

of (0,0) cannot be determined with specific knowledge of the

terms in order e. Thus suppose system (3.6) is written as

p pCX+2y+dp2 +ey2 +

(3.11)

•= y - y2 -, + fp2y + gy3 + O((ipH+IyI) 4

y yy )

as p,y 0.

The final result depends on all.of the constants d,e,f,g.

To simplify the computations, we suppose d = 1, e = f = g = 0.

The general case is treated in the same way although more computa-

tions are involved. Thus, our system is

- p(+2y+p
2 +0((Ipl+yl) 4

(3.12)
= By - y + o((lpl+ly)yZ p

I ii lll llllllll/ll i lll . .._...... ."__
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Making the same transformations as before and using the scaling

(3.8), one obtains the Equation (3.9) in the more explicit form

2py + ap + + OcI2 )

(3.13)
= 1 -y2 2 + O(icI )

as c-+ 0.

Our first objective is to analyze Eq. (3.13) when the c2

terms are neglected; that is, the equation

3p = 2py + tp + cp

(3.14)

1 2 2y= 4 -- y -p

For a = e = 0, the phase portrait is given in Fig. 3. Let

(p0 (t),y 0(t)),. p 0 (t) > 0, be the solution of (3.14) for

a - = 0 describing the heteroclinic-.orbit; that is, p0 (t) 0

as t * , y0 (t) - - 1/2 as t o , Y0 (t) - 1/2 as t -. We

may assume y0 (0) 0. In a neighborhood of a = c - 0, there

will be a curve with the property that Eq. (3.14) has a hetero-

clinic orbit joining (- 1/2,0), (1/2.,0) for each (a,c) belong-

the same ideas as in the case (iv) of the previous section as an

application of the method of Liapunov-Schmidt. One constructs a

= - - ----- ---- W
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scalar function G(c,c),.G(O,O) 0 0, such that there is a

heteroclinic orbit if and only if G(a,c) - 0. Furthermore,

G(C,C) M c p2(t)dt + e J 4(t)dt + O((IctI+IF) 2

as a,c -* 0. The Implicit Function Theorem implies there is a

unique solution a - a*(c) of G(c,c) = 0 for c sufficiently

small, a*(0) - 0 and

6 def da*(O)=J 1

2
(tMdt

The -pecific value of 5 as - is obtained in the following

way.- Since

2 12 2 2 4
p~dyO Qr4 -O -. po)dt

-0d r - 6? pdt

0 =ooV(Pyoo)- 12 - P22 -14

we have
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pJ2 pdyO 1 ( ) Podt JPlY2dt

-26 f*2d

*46 f wdt

3- 0 d o0

26 fPo(O) P Pt 0 O

from do0 = 2poYodt and the symmetry in the equation. Since

21/2 2
V~poo~t),,o~t)) -0, we hae P 0€o0) - 3 /4, po .3c1/4-yo),
YO (1/4-p /3 ) 1/ 2 . Using these relations we have, for 9 = p2

0J 3 / 4 0

" I O)P doo" 3/ C(--g,.0-1/2 dO.3
.0 d JO

1/2 "Pdy 3r
11 /2  (1 y 2 )d y  1

1-1/2 0 -1/2 4 -~y 2

Thus, S - -1/2.

The function a - a*(c) satisfying G(C*(c),c) * 0 for

Icl < co has the property that there is a heteroclinic orbit of

Eq. (2.14) for (ac) Ca*C),c).

Near the value C - 0, E 0, '.there is also a curve where

a Hopf bifurcation occurs. For a - 0, c = 0, Eq. (3.14) has

an equilibrium point y = 0, p = 1/2. The Implicit Function

Theorem implies there is an equilibrium close to this one for
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(a,c) small and it is given approximately by y0  -(a+c14)12,

P0 ' 1/2 + y0. Analyzing the stability properties of this

solution, one sees that it has eigenvalues on the imaginary

axis along a curve approximately given by a - -3c/4.

We next analyze the periodic orbits of (3.14) for (a,c)

small. Any such orbit must be close to one of the periodic

orbits for (a,c) = (0,0). For (a,c) # 0,0) let y(t), p(t)

be a periodic solution of (3.14) of period T, normalized so

that y(0) = 0. Following the procedure in [3], one can deter-

mine necessary and sufficient conditions on (Ca,e) in order that

(3.14) has a periodic orbit of period T near the orbit YT

defined by y(t), p(t). This is an application of the Fredholm

alternative and the method of Liapunov-Schmidt to obtain a bi-

furcation function GT(cc) with the property that there is such

a per:iod orbit if and only if GT(cE) = 0. The function GT(ce)

has the form

(3.15) GT(cc) = al p (t)dt + T .. p (t)dt + o((IjIIjI)2)
-T/2 -T/2

as (c,c) -o (0,0).

The Implicit Function Theorem implies there is a unique

solution a = a*(c,T) of (3.1S) for ' sufficiently small,

*C*(O,T) - 0 and

- -> - *v. -- J
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d~f caA( T) (t)dt

d 2 (t)dt
0

Using the first integral again, it is not difficult to see that

the period T is a strictly decreasing function of p(O) approach-

ing 2w as 0 1 1/2. This implies there is a unique periodic

orbit of period T on each of the curves defined by a = a*(e,T)

above.

Using the differential equation and the first integral V,

one can show that

2 = 2 p(T/2)
pdy T Jp(O) [aTT+r /3 -rZ/4i12 dr

where aT = V(p(O),y(O)) = p(0)14 - p3(0)/12.

As T + 0, it is not difficult, to see that aTT 0,

T  6 as T - where 6 = -1/2 is the number computed before

representing the slope of the curve defining the homoclinic orbit.

As T + 2w, aT 11/96, 6T o -3/4, the slope of the curve

defining the Hopf bifurcation. Consequently, there is a unique

periodic orbit of (3.14) between these two extreme curves.

We have, therefore, obtained a complete analysis of the

behavior of the solutions of (3.14) for all a E IR, E small.
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If we return to the original coordinate system in (3.12), we can

state the following result.

Theorem 3.1. There is a neighborhood U of (py) - (0,0) and

a neighborhood V of (A,$) - 0 such that the neighborhood V

is divided into regions as shown in Fig. 4 such that the flow for

Eq. (3.14) in each region is the one depicted in Fig. S. The

curves rl,r 2 ,r3 are given approximately by

r I  A '% -" 0 " 2 / 2

r,: XI' -0 - 382/4

r3: x- - 2s

2

4

1

6

r

Figure 4.
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ReinI Rei2

Region 1 Region 2

Region 3 Region 4

RegionS9 Region 60

Figure S.
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All curves in Fig. 4 correspond to saddle-node bifurcations

except r1 and r2. Each point on r2 corresponds to a generic

Hopf bifurcation and each point on r1  corresponds to bifurcation

through a homoclinic orbit.

We remark that the same conclusions as in Theorem 3.1 will

be valid for (3.11) for most values of the modal parameters d,e,f,g.

Only the terms in B2 of the curves rl,r 2 will be changed.

There will be a submanifold of codimension 2 where the complete

description of the flow will require the terms of order higher

than in (3.11).

Theorem 3.1 gives a complete description of the flow for the

autonomous part of Eq. (3.11) obtained by neglecting terms of

order >3. These higher order terms are periodic in the independent

variable. Thus, we have a problem similar to the one described in

the previous section. The results there and especially Theorem 2.1

gives a description of the flow for the complete equations except

in a neighborhood of the curve r of-.bifurcation through a homo-

clinic orbit. The periodic perturbation near points on this curve

can change the structure of the flow in a significant way as we

have seen in Section 2. Points on this curve are analyzed in the

same manner as in Section 2 in the following way.

Suppose we consider the scaled equations (3.13). Applying

the method of Section 2 to obtain the curves in the a,c plane

for which there is a homoclinic orbit, we choose a point (ct 0 ,c 0 ).
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corresponding to a point.on rl, introduce a phase shift

along the homoclinic orbit corresponding to (ac1c). If

a M aO + V, c - Eo + P, then one can obtain a bifurcation

function G(*,v,p) for E JR, (U,v) close to zero. The

function 6 has the form

= 4p + phot W€) + O((IvI+II) 2)

as v,+ 0. If we make the generic hypothesis that h ,)a0 ,e0

have absolute local maximum and minimum and no ther extreme

values, then there are sectors in the (v,p)-plane in which

there are either no homoclinic orbits or there are homoclinic

orbits, the same situation that occurs in Theorem 2.2.

The function ho (0), in principle, can be computed.

One*6hould be able to use the

same argument as in [31 to show that subharmonic bifurcations

also occur near points on r D. Due to the complexity of the

computations, we do not dwell on this 4uestion.

Equations (8.8) are the generic situation for two purely

imaginary and one zero eigenvalue. If further symmetries occur

in the problem, there may be no second order terms in the normal

form for the vector field. In this case, the simplest case for

the approximate equations are
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2 2p.- p(X-ap -by2 )

(3.16)
( = y(S+cp2 +dy2 )

with ab,c,d fixed nonzero constants and X,O small bifurca-

tion parameters. In the case of a fourth order equation with

two purely imaginary roots, the same equations occur in a natural

way coupled with two angle variables. The complete bifurcation

diagram for this equation is more difficult to obtain and will

require the consideration of the fifth degree terms.

The only case that will be discussed in detail is a = d = 1,

bc > 1. We will make some remarks on the other cases later.

Thus,, we consider the equations

p = p(X-p 2-by2)

(3.17)
2 y(B+cp 2 y2

y - yO ).+

The results are summarized in the following theorem.

Theorem 3.2. There is a neighborhood U of (p,y) = (0,0) and

a neighborhood V of (X,B) - (0,0) such that the neighborhood

V is divided into regions as shown in Fig. 6 such that the flow

for Eq. (3.17) for p > 0, y > 0, in each region is the one

depicted in Fig. 7. The curves r1 ,r2 ,r3 are given by

t '~
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r: + bO = 0, a < 0

r2 :X(l+c) + 8(l+b) = 0, 0 < 0

r 3 :c + =o, 0< 0

All of the bifurcations are saddle-node type except the one that

takes place between region 4 and region S. On the curve r2v

the system is Hamiltonian and the flow is depicted in Figure 8.

17

6

2

3

Figure 6.

Ilk
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Region 1 Region 2 Region 3

Region 4 Region 5

Region 6 Region 7

Figure 7.

Figure 8.
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Remark. The nature of the bifurcation from Region 4 to Region 5

is very complicated and not generic. To obtain a generic bifurca-

tion, one must have some terms of order higher than three. This

situation will be discussed later.

Proof: The lines p = 0 and y = 0 are invariant for all X,8.

In Regions 1,2,3,6,7, it is easy to verify that all equilibrium

points lie on these lines. An analysis of the linear variational

equation around these points gives the flows depicted in these

regions. Furthermore, on the curves rlr 2 there is a saddle-node

bifurcation which gives rise to an equilibrium point (r0 ,y0 ) with

PO > 0, Y0 > 0. Thus, if there is to be a periodic orbit of (3.17),

it must occur for values of X,a in the union of the regions four

and-five and .J3, Also, for a periodic orbit to exist, there must

be some value of a,e for which the eigenvalues of the linear

variational equation about (r0 ,y0 ) are purely imaginary. If A

is the matrix of this equation, then

det A = 4p0y0(bc-1 )

(3.18) tr A - -2(p2_-y 2

p0  -(X+Ob)/(bc-l), yo (O+Xc)/(bc-l)

Since bc > 1, p2 > 0, y > 0, the eigenvalues are purely imaginary

if and only if tr A - 0, that is,

EL•
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(3.19) X(l+c) + 0(l+b) = 0

Equation (3.19) is the formula for r2. The curves rl, r2  are

obtained respectively when po = 0 and yo 0.

The local flow near r1,r2  is easily shown to be the one

depicted in Regions 4 and 5. This picture remains global in both

regions 4 and 5. In fact, any periodic orbit must enclose (p0 ,y0 )

since there are no other critical points. Such an orbit could

only appear ty the introduction of a saddle-node type bifurcation

in region p > 0, y > 0. This is impossible.

To show there is a first integral on 2 = {(,p):x = -m0 o < 0),

m= (l+b)/(l+c) > 0, let X = -moO

(3.20) p + I01 2p, y Il/1y, t 0I1I't.

Since 0 < 0, we obtain the equivalent equations

•2..
p = mop --bpy .- p

(3.21)

2 3y = -Y + cp y + y

If

(3.22) Wb+l c+lC5._C__ TJ -C_ T
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then the function

(3.23) H(u,v) = uvvp[! U-V]

is a first integral of Eq. (3.21). This completes the proof of

the Theorem.

Remark. If b > 0, c > 0, bc < 1, then the equilibrium point

(pO,yO) with p0 > 0, yo > 0 is always a node, the curve r3

does not occur and the flow in the region between rI and r3

is pictorially the same as shown in Regions 4 and S in Fig. 7

except the interior point is a stable hyperbolic node. If b > 0,

c < 0, then additional complications arise because there is the,

possibility oi two more equilibrium points in the region p > 0,

y > ,0 and there can be a saddle-node bifurcation in this region.

We do not discuss this case in detail.

Let us now discuss perturbations bf Eq. (3.17), beginning

with autonomous perturbations. All of the phase portraits in

Fig. 7 will be preserved under small perturbations. However, the

one in Fig. 8 will not. Therefore to obtain a more complete picture

of the behavior of the equation under, perturbation, we consider

the effect of the addition of higher order terms in the same way

as cubic terms were considered in Theorem 3.1.
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If we consider Eq. (3.16) as arising from the problem in

IR4 where the linear variational equation has two pair of purely

imaginary roots, then the perturbation terms must be 5th degree.

Thus, we consider

p = p( -p -by+p 4 )

(3.24)

y = y(O+cp 2 +y 2 ).

We are interested in the behavior of solutions near the line

= -m 0 , m0 = (b+l)/(l+c). Introduce the scaling

P- II1/2p, y 10 1 I 1/ 2y, t I 't, X t+ -m0 0 + as

to obtain

•p p(mo+c-p -by +8B4)

(3.25)

y = y(-l+cp 2+y 2).

One can proceed as in the proof of Theorem 3.1 to obtain the

curve in the (X,8)-plane along which Eq. (3.24) has a homoclinic

orbit. In terms of the scaled variables, we observe that such a

solution can exist only in a neighborhood of a - 0, 0 - 0. We

then obtain a.bifurcation function G(c,s) for a homoclinic orbit

and observe that it has the form
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G (a, = aB) o2P(t)dt + J po(t)dt + O((1a.+lI) 2)

as a,O 0, where (po(t),yo(t)) describe the homoclinic orbit

4for a 0 0, 8 - 0. There is no term involving po(t) because

for a = 0, 8 - 0, the system is Hamiltonian. The equation

G(a,O) - 0 has a unique solution a - *(B) in a neighborhood

of (a,B) = (,0), a*(0) = 0. This gives a curve

r2 = (,S) : A - m0  + a*()}

in the (X,O)-plane such that Eq. (3.4) for (x,o) E r has a

homoclinic orbit.

-One can also obtain a curve r2  in the (X,O)-plane

I,

r 2  {(X,8) X - - moo + a

where a**(0) - 0, such that for any. (,) r2, the linear

variational equation for the solution (po,yo), pO > 0, yo > 0,

of (3.4) has both eigenvalues purely imaginary. Proceeding as

before, one obtains the existence of a unique periodic orbit in

the Region 4' between r2 and r2 . The flow in Region 4' is

shown in Fig. 9. The complete bifurcation diagram is shown in

Fig. 10.

WO
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Figure 9.

Figure 10.
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It remains to discuss perturbations of (3.24)when the

higher order terms contaIn angle variables. If there is only

one angle variable (the case of two purely imaginary and one zero

root) everything follows exactly as for Eq. (3.14). If there are

..two angle variables, the situation- is more complicated. The

general theory of integral manifolds implies that every hyperbolic

equilibrium point of the unperturbed equation becomes a hyperbolic

torus of dimension 2 and every hyperbolic periodic orbit of the

unperturbed equation becomes a hyperbolic three dimensional torus

as one crosses r2 (the Hopf bifurcation). The analysis in Section

2 shows that the two dimensional torus bifurcates to give a three

dimensional torus. None of the other cases are well understood.
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